Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie

Purpose

Shelf life

CAS and PHP session cookies

Login credentials, session security

Session

Tarteaucitron

Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie

Purpose

Shelf life

atid

Trace the visitor's route in order to establish visit statistics.

13 months

atuserid

Store the anonymous ID of the visitor who starts the first time he visits the site

13 months

atidvisitor

Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at cil-dpo@inrae.fr or by post at :

INRAE

24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal INRAE CIRAD IRD

Home page

How can the use of plant genetic resources be improved to support the effectiveness of breeding programs?

INRAE, NICOLAS Bertrand, Serres experimentales UMR Génomique végétale Evry
In a recent special issue article in the journal Proceedings of the National Academy of Sciences, Plant Pillar scientists demonstrated how to sustainably improve genetic gain in crop plants using relay populations and genetic diversity management.

Increased and stable plant production requires further genetic progress. To maintain this, breeders must preserve genetic diversity in their programs, even though it is depleted by breeding. Over the last century, large collections of genetic resources have been organized, representing significant diversity. However, their use for variety development has remained an unsolved problem because of their performance gap with elite varieties. Advances in genotyping and statistical methods now allow their effective use through linkage schemes based on genomic prediction and diversity monitoring. Our study provides a demonstration of a series of new tools incorporated into new breeding schemes to effectively utilize donor genetic resources, allowing them to contribute to the improvement of quantitative traits in elite populations.

Abstract

Genetic progress in crop plants is necessary to cope with human population growth and to ensure production stability under increasingly unstable environmental conditions. Selection is accompanied by a loss of genetic diversity, which limits genetic gain in the medium to long term. Methodologies based on molecular marker information have been developed to manage diversity and have proven effective in increasing long-term genetic gain. However, with realistically sized plant breeding populations, diversity depletion in closed programs seems inescapable, requiring the introduction of relevant diversity donors. Although maintained through considerable effort, genetic resource collections remain underutilized, due to a large performance gap with elite germplasm. Crossing genetic resources with elite lines to create a bridging population before their introduction into elite programs can effectively manage this gap. To improve this strategy, we explored, using simulations, different options for genomic prediction and genetic diversity management in a global program including an intermediate component (bridging population) and an elite component. We analyzed the dynamics of fixation of quantitative trait loci and followed the fate of allele donors after their introduction into the breeding program. Allocating 25% of the total experimental resources to the creation of a bridge population appears to be highly beneficial. We have shown that potential diversity donors should be selected on the basis of their phenotype rather than genomic predictions calibrated with the current breeding program. We recommend incorporating improved donors into the elite program using global calibration of the genomic prediction model and selection to maintain consistent diversity. These approaches effectively use genetic resources to support genetic gain and maintain neutral diversity, thereby improving flexibility to meet future breeding goals.

Contact:

  • Alain Charcosset alain.charcosset@inrae.fr
  • Génétique Quantitative et Evolution (GQE) Le Moulon, 91190, Gif sur Yvette France

See also

Reference :

Sanchez Dimitri, Sadoun Sarah Ben, Mary-Huard Tristan, Allier Antoine, Moreau Laurence, Charcosset Alain. 2023. Improving the use of plant genetic resources to sustain breeding programs’ efficiency. Proceedings of the National Academy of Sciences. e2205780119, 120-14. doi:10.1073/pnas.2205780119
https://www.pnas.org/doi/abs/10.1073/pnas.2205780119 
Genetic progress of crop plants is required to face human population growth and guarantee production stability in increasingly unstable environmental conditions. Breeding is accompanied by a loss in genetic diversity, which hinders sustainable genetic gain. Methodologies based on molecular marker information have been developed to manage diversity and proved effective in increasing long-term genetic gain. However, with realistic plant breeding population sizes, diversity depletion in closed programs appears ineluctable, calling for the introduction of relevant diversity donors. Although maintained with significant efforts, genetic resource collections remain underutilized, due to a large performance gap with elite germplasm. Bridging populations created by crossing genetic resources to elite lines prior to introduction into elite programs can manage this gap efficiently. To improve this strategy, we explored with simulations different genomic prediction and genetic diversity management options for a global program involving a bridging and an elite component. We analyzed the dynamics of quantitative trait loci fixation and followed the fate of allele donors after their introduction into the breeding program. Allocating 25% of total experimental resources to create a bridging component appears highly beneficial. We showed that potential diversity donors should be selected based on their phenotype rather than genomic predictions calibrated with the ongoing breeding program. We recommend incorporating improved donors into the elite program using a global calibration of the genomic prediction model and optimal cross selection maintaining a constant diversity. These approaches use efficiently genetic resources to sustain genetic gain and maintain neutral diversity, improving the flexibility to address future breeding objectives.

 This article has recently been published in the journal Plants: Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives.